SEGBEE: Mobile Application for Honey Segmentation in Apiary Boards




Beekeeping, Digital Image Processing, Mobile Application, Segmentation


Beekeeping is one of the most important activities for humans. Since ancient times, honey has been used in the treatment of several diseases and is an extremely powerful antioxidant. The process of visual analysis of the apiary requires trained specialists who try to obtain relevant information to make a decision about what to do with the honeycomb. Since the process is performed manually, given the complexity of the task, opportunities arise for the application of automated systems that can assist the beekeeper's decision making. Thus, this paper presents the development of the application \textit{SegBee}, a computational tool that performs the segmentation in the apiary plates, where there is the presence of honey, in an accessible, fast and practical way. To do this, the OpenCV library was used for the digital image processing part, and the Kivy library was used to develop the interface of the mobile application. The tests performed showed that the images were adequately segmented by \textit{SegBee}, indicating where the honey is located on each analyzed plate. A visual comparison was made between results obtained by \textit{SegBee} and another commercial application, demonstrating the effectiveness of the developed tool. The proposed solution contributes to the improvement of the beekeeping professionals' work, once the application is simple to use and fast to process, being able to help in the honey identification task in apiaries plates.


Download data is not yet available.


BUAINAIN, A. M. et al.Cadeias produtivas de flores e mel. [S. l.]: IICA, 2007. v. 9. (MAPA. Agronegócios, v. 9).

BARROS, D. d. S. et al. Mapeamento e caracterização ambiental das áreas apícolas dos municípios de mucajaí e cantá doestado de roraima.REVISTA AGRO@ MBIENTE ON-LINE, [S. l.], v. 2, n. 1, p. 77–87, 2010.

BACAXIXI, P. et al. A importância da apicultura no brasil.Revista Científica Eletrônica de Agronomia, [S. l.], v. 10, n. 20,2011.

CARVALHO, M. A. G. d. Processamento digital de imagens aplicações. [S. l.], 2004. Disponível em:<>.

GONZALEZ, R. C.; WOODS, R. C.Processamento digital de imagens. 3. ed. [S. l.]: Pearson Universidades, 2009.

PERSECHINO, A.; ALBUQUERQUE, M. P. d. Processamento digital de imagens: conceitos fundamentais.MONOGRAFIAS-CBPF, v. 1, n. 4, 2015.

CÂMARA, G. et al. Spring: Processamento de imagens e dados georeferenciados. [S. l.], p. 233–242, 1992.

SILVA, D. J. A.Segmentação. Paraná, Brasil, 2013. Disponível em: <>.

VIEIRA, D. M. A. d. C. e. a. Visão computacional: segmentação de imagens. São Paulo, Brasil, 2018. Disponível em:<>

FURUIE, S. S. Processamento de imagens segmentação. 2016. Disponível em: <à ̆gÃˇco2016.pdf>.

PATEL, P.; THAKKAR, A. The upsurge of deep learning for computer vision applications.International Journal ofElectrical and Computer Engineering, IAES Institute of Advanced Engineering and Science, [S. l.], v. 10, n. 1, p. 538, 2020.

LATIOUI, Z. E.; BOUGUEROUA, L.; MORETTO, A. Social media chatbot system-beekeeping case study. In:International Conference on Hybrid Intelligent Systems. [S. l.]: Springer, 2018. p. 302–310.

HADJUR, H.; AMMAR, D.; LEFÈVRE, L. Analysis of energy consumption in a precision beekeeping system. In:Proceedings of the 10th International Conference on the Internet of Things. Nova York, EUA: Association for ComputingMachinery, 2020. (IoT ’20), p. 1–8.

ZGANK, A. Iot-based bee swarm activity acoustic classification using deep neural networks.Sensors, MultidisciplinaryDigital Publishing Institute, [S. l.], v. 21, n. 3, 2021.

MENAD, H.; BEN-NAOUM, F.; AMINE, A. Deep convolutional neural network for pollen grains classification. In:JERI.[S. l.]: CEUR-WS, 2019.

MOHD-ISA, W.-N.; NIZAM, A.; ALI, A. Image segmentation of meliponine bee using faster r-cnn. In:2019 Third WorldConference on Smart Trends in Systems Security and Sustainablity (WorldS4). Londres, Reino Unido: IEEE, 2019. p. 235–238.

DAVIDSON, P. et al. Anomaly detection in beehives using deep recurrent autoencoders. In: . [S. l.]: [s.n.], 2020. p.142–149.

BERKAYA, S. K.; GUNAL, E. S.; GUNAL, S. Deep learning-based classification models for beehive monitoring.Ecological Informatics, Elsevier, [S. l.], p. 101353, 2021.

ALVES, T. S. et al. Automatic detection and classification of honey bee comb cells using deep learning.Computers andElectronics in Agriculture, Elsevier, Países Baixos, v. 170, n. C, p. 105244, 2020.

CHOLLET, F. The limitations of deep learning.Deep Learning With Python, Manning Publications, 2017.

ABBE, E.; SANDON, C. Provable limitations of deep learning.arXiv, 2018.

SHINDE, P. P.; SHAH, S. A review of machine learning and deep learning applications. In:2018 Fourth internationalconference on computing communication control and automation (ICCUBEA). Pune, Índia: IEEE, 2018. p. 1–6.

GIGER, M. L. Cad, radiomics, and ai in breast imaging.High-Dimensional Fuzzy Clustering, 2020.




How to Cite

Rocha, D. W. S., Melo, E. C., & Oliveira, B. A. S. (2022). SEGBEE: Mobile Application for Honey Segmentation in Apiary Boards. Revista De Informática Teórica E Aplicada, 29(3), 54–64.



Regular Papers

Most read articles by the same author(s)